The Use of Haptic and Tactile Information in the Car to Improve Driving Safety: A Review of Current Technologies

Yoren Gaffary 1,* and Anatole Lécuyer 1,2,*

- ¹Inria Rennes, Campus de Beaulieu, 35042 Rennes, France
- ² UMR IRISA, 263 Avenue Général Leclerc, 35000 Rennes, France

Correspondence*:

Yoren Gaffary and Anatole Lécuyer, Inria Rennes, Campus de Beaulieu, 35042 Rennes Cedex

firstname.lastname@inria.fr

2 ABSTRACT

- 3 This paper surveys the haptic technologies deployed in cars and their uses to enhance drivers'
- 4 safety during manual driving. These technologies enable to deliver haptic (tactile or kinesthetic)
- 5 feedback at various areas of the car, such as the steering wheel, the seat or the pedal. The paper
- 6 explores two main uses of the haptic modality to fulfill the safety objective: to provide driving
- 7 assistance and warning. Driving assistance concerns the transmission of information usually
- 8 conveyed with other modalities for controlling the car's functions, maneuvering support and
- 9 guidance. Warning concerns the prevention of accidents using emergency warnings, increasing
- the awareness of surroundings and preventing collisions, lane departures and speeding. This
- paper discusses how haptic feedback has been introduced so far for these purposes, and provides
- 12 perspectives regarding the present and future of haptic cars meant to increase driver's safety.
- 13 Keywords: tactile stimulation, haptic technologies, automotive industry, driver safety, survey

1 INTRODUCTION

- 14 Haptics has taken an important place in our everyday human-computer interactions. Most mobile phones
- 15 are nowadays equipped with a vibration actuator providing tactile/kinesthetic feedback to notify users of
- 16 incoming phone calls.
- 17 From a commercial viewpoint, it is only recently that haptics was introduced to a task done everyday by
- 18 millions of people: driving.
- 19 Drivers are expected to maintain their visual attention to the road. However, devices such as mobile
- 20 phones or GPS device could cause security problems as they require visual attention from drivers (Strayer
- 21 and Drews, 2007; Benedetto et al., 2012). Oral discussions or noisy children can also drag the driver's
- 22 attention due to their verbal content or startling effect, threatening driver's safety (Pettitt et al., 2005; Politis
- 23 et al., 2014b). This raises the need to be able to quickly convey information to drivers without adding
- 24 cognitive load to them. A solution would be to introduce and use haptic feedback to convey information.
- 25 Indeed, while the visual and auditory channels of the driver are often heavily engaged, the tactile and
- 26 kinesthetic channels are not.

28

29

30

31

32

33

34

41

Haptic feedback seem effective as substitute to visual and audio feedback and tend to be quickly perceived by drivers (Scott and Gray, 2008). Unlike the light signals on the dashboard, haptic feedback can be perceived even in high cognitive load conditions like traffic jams (Murata and Kuroda, 2015). It also appears to be more effective to warn drivers about emergency safety issues than visual or auditory feedback (Politis et al., 2014a). Various areas of the driver's body are also in constant contact with parts of the car, such as the hands for the steering wheel, making them obvious locations for haptic stimulation during driving (Hjelm, 2008). Thus, "Haptic cars" could take advantage of using haptic feedback to convey information to drivers.

There have been already papers related to the analysis of the use of haptic feedback in cars. Van Erp 35 and Van Veen (2001) proposed a classification of information which could be presented in cars using 36 tactile feedback. They distinguished four applications which could be addressed by tactile feedback: safety, assistance, fun and efficiency. Petermeijer et al. (2015) presented recently an overview proposing 38 an evaluation of haptic systems on driver performance and behavior. This overview was focused on 39 the measures collected during experimental studies (i.e. reaction time) designed to assess the efficiency 40 of haptic systems and the validation of experimental protocols. Chang et al. (2011) proposed a more technological point-of-view of haptic systems proposed in cars for information presentation and warning 42 purposes. This study was restricted to haptic seats. In contrast, our survey focuses on haptic technologies 43 proposed in cars to enhance the driver's safety during manual driving. It categorizes them in two classes: 44 haptic assistance systems and haptic warning systems. Our survey covers the various areas that could be 45 stimulated using tactile or kinesthetic feedback to convey information to drivers. Our objective is twofold: 46 1. highlight the existing technologies and their advantages as well as their main limitations, and 2. provides 47 some guidelines for future works. 48

The remaining of the paper is organized as follows. The next section introduces the available haptic 49 technologies in cars and their associated uses. The two following sections present the two classes of haptic 50 systems to enhance safety in the car. Finally, a discussion and perspectives for future work are exposed. 51

2 HAPTIC TECHNOLOGIES IN CARS

- The haptic modality includes two kinds of haptic feedback: tactile and kinesthetic. The tactile feedback addresses the tactile perception from the skin, such as vibrations. The kinesthetic feedback addresses the kinesthetic perception of our own muscular effort. The haptic modality distinguishes itself from visual and 54 auditory senses as most devices for haptic stimulations require a physical contact with users. This explains 55 why haptic actuators have to be at specific locations in the car (see Figure 1). 56
- Haptic feedback can be directly deployed in the car to stimulate various parts of the drivers body, which 57 are already in contact with various parts of the car: 58
- 59 • Steering wheel, in physical contact with the driver's fingers.
- Seat belt, in physical contact with the driver's torso. 60
- **Pedal**, in physical contact with the driver's foot. 61
- Seat, in physical contact with the driver's back and legs. 62
- 63 • **Dashboard**, in physical contact with the driver's fingers.
- Clothes, in physical contact with the driver's body. 64
- These different areas can be used to send various kinds of information to the driver. 65

- Van Erp and Van Veen (2001) identified five classes of information that can be interesting to be displayed in cars using the haptic modality:
- 68 1. **Spatial information**. To perceive the position of objects all around the car for users.
- 69 2. Warning signals. To warn the driver about immediate dangers.
- 70 3. **Communication**. To communicate silently and privately information to the driver, without annoying the passengers.
- 4. **Coded information**. To communicate information representing the status of the car (such as current temperature).
- 5. **General**. To give information on the settings of switches and buttons, indicate preference points, etc.
- Some existing uses could overlap multiple categories. For instance, warning user of the presence of an object ahead of the car could correspond to both spatial information and warning signal. Besides, our survey focuses on safety improvement. We investigate especially the use of haptic feedback for conveying spatial information, warning signals and coded information.
- This explains our survey uses a classification inspired by the one of Petermeijer et al. (2015). They distinguished two categories of use for haptic technologies in cars: guidance systems, which continuously support the driver when the corresponding systems are activated, and warning systems, which activate themselves when a threshold is exceeded to inform the driver about an event. To avoid confusions between the guidance systems category and the GPS-like navigation purpose, the current survey uses the term of assistance systems instead of guidance systems, which also includes for instance maneuver support for parking. Thus, we define and will further refer to "haptic assistance systems" and "haptic warning systems" as follows:
- Haptic Assistance Systems are defined as the on-board systems used to provide assistance to the driver using the haptic modality. In this case, drivers initiated voluntarily an operation and haptic feedback are triggered accordingly to this operation. The uses include controlling the car's functions located on the dashboard, maneuvering support and guidance.
- Haptic Warning Systems are defined as the on-board systems used to provide warnings to the driver using the haptic modality. Such warnings are not responding to a voluntary driver's operation. The uses include improving awareness of surroundings, collision prevention, lane departure prevention and speed control.
- The two next sections introduce the haptic technologies corresponding to these two types of haptic systems.

3 HAPTIC ASSISTANCE SYSTEMS

- 97 Several haptic technologies were proposed to assist drivers in operating their car while receiving information
- 98 through the haptic modality. This section is divided in three parts corresponding to the three categories of
- 99 haptic assistance systems: controlling the different functions of the car, supporting maneuvers and guiding
- 100 the driver. The corresponding uses are illustrated in Figure 2.

101 3.1 Controlling the car's functions

Nowadays, drivers have to deal with an increasing amount of technologies integrated to the car, such as radio or air conditioner. These technologies are commonly controlled though the dashboard of the car,

using buttons or sliders as input. Interacting with the dashboard is a complex task, as it requires us to maintain our eyes on the road while performing fine motoric control.

Pitts et al. (2012) showed that providing a vibrotactile feedback during a user's pressure on the tactile 106 dashboard tends to reduce glance duration on the dashboard screen, from 2.96 s to 2.40 s. This decrease 107 is more pronounced with a slow responsive interface, simulated in their experiment by a delayed visual 108 feedback. Current dashboards also include devices such as rotary knobs and sliders. These kinds of devices 109 require precise selections. Grane and Bengtsson (2013) used a tactile rotary device called the Alps Haptic 110 Commander deviceas a substitute to a visual interface to perform a menu selection as a secondary task 111 while changing lanes. This device enables to convey haptically texture information by repeating click 112 effects. They observed that adding this secondary task increased driving deviation when the interface had 113 only a visual feedback about the selected item. However, when adding a haptic feedback to the visual 114 feedback to haptically perceive the selection on the rotary device, the number of driving deviations did 115 116 not change. Mullenbach et al. (2013) proposed a haptic slider, providing a tactile stimulation each time the value on the slider changes. This slider used a tactile pattern display located below the center console 117 and enables to control its coefficient of friction. Mullenbach et al. (2013) showed that a haptic feedback 118 decreases the total eyes-off-road time by 19% compared to a visual feedback, going up to 39% when the 119 feedback consists in a visuo-haptic combination. 120

However, the use of haptic feedback for controlling the car's functions should not be limited to the dashboard as recent cars have also buttons placed on the steering wheel. Most of the haptic feedback previously presented could be applied to buttons located on the steering wheel. Using vibrations on the steering wheel remains to be investigated further as it is currently focused on perceptive studies and not on the the design of novel kinds of interfaces. (Diwischek and Lisseman, 2015) evaluated four different vibration frequencies and two waveforms in terms of user preference. Their results suggest that a frequency of 230 Hz was the most preferred, and a frequency of 105 Hz was the least prefered compared to frequencies of 135 and 175 Hz. Besides, users significantly preferred sinusoidal signal waveforms than a fall-lunge-decay waveforms, no matter the frequency. However, the stimuli should also be easy to discriminate to avoid the need for the driver of looking at the dashboard. Vibrations as feedback on the steering wheel nevertheless display a limitation as they could interfere with vibrations caused by the road.

In a nutshell, tactile feedback at the level of either the dashboard or the steering wheel remains the main source of haptic information which has been proposed for enabling to control the functions of the car so far. These two locations (steering wheel and dashboard) are indeed usually associated with the standard interfaces used to control the car's functions.

3.2 Maneuver support

121

122

123 124

125

126 127

128

129

130

131

136

Some specific driving tasks as parking require more complex and difficult maneuvers than others. Such operations require a high load of cognitive resources, pushing most automobile manufacturers to equip their cars with for instance a self-parking function. However, some drivers do not trust in an automation of their car (Koo et al., 2014). Haptic feedback were then proposed to help drivers during complex driving-related maneuver, without using a complete automation.

A first example of a complex maneuver is perpendicular parking. A haptic steering wheel was proposed by Hirokawa et al. (2014) to help drivers to operate perpendicular parking. Their system evaluates the required steering movements to perform parking and guides the driver in their execution using kinesthetic feedback at the steering wheel. This allows supporting the driver, who remain in total control of the car without automation. Another example of driving maneuver is driving backward. Most recent cars are equipped

153

154 155

156

157

158

159

161

165

181

183

184

185

186

with a camera placed behind of the car that aims to guide the driver to reduce the cost of awareness of the 148 surroundings. However, the camera does not help when the car has one or multiple trailers. Morales et al. 149 (2013) proposed a haptic solution to avoid unsafe steering movements when the car is attached to multiple passive trailers, such as for tourist road trains. Using hitch sensors, they augmented a steering wheel with 150

force feedback to prevent drivers from exceeding the maximum rotation angles of the trailers. 151

Manipulating the wheel correctly could also be tricky in normal driving, for instance, when there is low visibility. Profumo et al. (2013) showed that a force-feedback steering wheel could help the driver to handle curves. During a simulated driving task with low visibility, the application of a rotary force on the wheel in the direction of the curves on road helped the driver to maintain his trajectory. There are other sorts of operations implying using the haptic wheel which could lead to critical injuries on failure, as driving near the car's handling limits. (Katzourakis et al., 2014b) showed that at maximum velocity, a force-feedback assistance on the steering wheel reduces drivers' mental demand without impairing their driving performance. The feedback decreased the magnitude of the steering torque compared to no feedback. In particular, (Katzourakis et al., 2014b) showed that the handling limits of the vehicule are reached less using a force-feedback assistance than without one.

162 In a nutshell, kinesthetic feedback applied on the steering wheel is the main source of haptic information proposed to help drivers maneuvering their car so far. The main objective of such systems is indeed to 163 assist the driver when manipulating the steering wheel. 164

3.3 Navigation

Using a navigation system in cars can be distracting for the driver. This kind of system requires to focus 166 on the navigation instructions. They especially require a high level of attention in cities where there are 167 many roads. This justifies the use of the haptic modality for navigation purpose, freeing both driver's visual 168 and auditory senses. 169

170 One of the most common approaches for haptic feedback in navigation purpose is to augment the steering wheel. Ege et al. (2011) proposed a device consisting in 2 vibrators located at the left and right sides of 171 172 the steering wheel. This device efficiently reduced navigation errors compared to only auditory feedback, especially in a noisy environment. The participants made 3.7 times less errors using a haptic-auditory 173 feedback compared to an auditory feedback alone. Hwang and Ryu (2010) proposed a more technically 174 advanced approach called the Haptic Wheel that uses 32 actuators distributed all around the steering wheel. 175 This device is able to provide various rendering techniques, such as giving the illusion of displacement 176 by sequentially activating the different actuators around the wheel. It can also provides a sensation of 177 filling by generating vibrations starting from the top of the wheel and actuating actuators clockwise or 178 counterclockwise. Their results showed the best recognition rate occurred when generating two adjacent 179 vibration pulses at a time, going clockwise or counterclockwise. 180

Using a waist belt constitutes another way to convey directions, enabling tactile stimulations all around the driver. (Asif et al., 2012) proposed a wearable belt including 8 tactors located around the belly to 182 indicate directions. Their system provides information on the distance of the turn, depending on the number of times a specific tactor is triggered. They showed that in a high cognitive workload condition, the orientation performance using this device was improved. Besides, their tactile feedback did not increase distraction compared to conventional navigation systems.

187 Another body area to stimulate for navigation purposes is the back of the driver. Several studies have showed the relevance of using augmented car seats, for instance, using a matrix of actuators. Hogema et al. 188

(2009) developed an 8×8 actuator matrix located in the seat pan, providing complex patterns to indicate directions. For example, a "turn left" signal would correspond to an activation of the tactors located on 190 the left side of the seat. An experimental study in-traffic showed almost no direction error. However, the 191 haptic stimuli provided by this device are static as they convey information based only on the location 192 of the stimulated area. Hwang et al. (2012) proposed dynamic haptic feedback using a 5×5 actuator 193 194 matrix located in the back of the seat, conveying information using a sequential activation of the tactors. In this case, a "turn left" signal would correspond to a sequence of activation of the tactors, going from 195 middle-right to middle-left. This system constitutes an alternative way to provide guidance instructions to 196 the driver. 197

In a nutshell, tactile feedback at the steering wheel or embedded in the driver's clothes/seat are the two 198 main sources of haptic information which have been proposed for navigation purpose so far. The steering 199 wheel is the interface used to turn and control the vehicle's yaw, which motivates the use of a haptic 200 201 feedback at this location. Then, large areas of the seat or the clothes are in constant physical contact with the driver, enabling to provide rich and precise direction information. 202

HAPTIC WARNING SYSTEMS

In order to increase safety in cars, haptic feedback can also be used to warn the driver about immediate dangers, within so-called "haptic warning systems". This makes them also usable in warning users about 204 immediate dangers. Information about location should require less cognitive resources and be quicker 205 to process with haptic feedback than with visual or auditory feedback. Haptic stimulations has a strong link with spacial location as stimulate specific parts of the body. This section is divided in four parts corresponding to the four categories of haptic warning systems: supporting the awareness of the driver about his or her surroundings, warning him about potential collisions, preventing lane departure and speeding as illustrated in Figure 3.

Awareness of surroundings

206

207

208

209

210

211

212

213

214 215

216

217 218

219

220 221

222

223

224 225

226

227 228

229

Visual stimuli are not always effective in catching a driver's attention as driving already requires a high amount of visual attention. It is often complicated for drivers to have at every time a complete awareness of their surroundings. Tan et al. (2003) stated that the use of localized haptic feedback represent another way convey to drivers spatial information of their surroundings. Ho et al. (2005) proposed for instance a tactile belt worn by the driver around his/her waist to inform him/her of potential collisions. This belt is composed of two actuators, one at the back and one at the front of the driver. One of the actuator is activated in case of potential collisions. When the location of the stimulation is inline with the location of the potential collision (i.e front when the other vehicule is in front, back when the other vehicule is behind), the reaction time of the driver is decreased. This shows the potential of providing information about location using haptic feedback.

Morrell and Wasilewski (2010) proposed a haptic seat pan using a 3×5 matrix of vibrotactile actuators to convey the spatial positions of other nearby vehicules to the driver. Each actuator corresponds to a position relative to the driver. For instance, the bottom-left actuator corresponds to a car currently behind and at the left of the driver. Their preliminary results suggested an improvement of driving performance compared to a rear view mirror used alone, but no further studies were conducted to our knowledge. The use of the haptic feedback enabled to decrease the amount of time with a car in blind spots. (Grah et al., 2016) proposed similarly a haptic deformable back seat to notify the driver of cars behind him/her. The system was composed of a 4×4 matrix of servomotors, each controlling a pushrod applying pressure to

235 236

237

244

245

246

247

248

249

258

259

260

261

262

263

264

265

266

267

268 269

270

271

the back of the driver, indicating if there is an obstacle while overtaking or changing lane. The primary 230 231 goal of the system was to encourage the driver to scan the surroundings by providing him/her a feedback

about the distance and angle of obstacles. 232

Enhancing the awareness of the driver could also be helpful during some tasks such as overtaking. Löcken et al. (2015) proposed a haptic belt worn around the waist to help the driver during overtaking tasks. Using 234 six actuators around the waist, the device indicates the presence of surrounding cars to the driver. When another car was already overtaking the participants, they were more likely to renounce to overtake the car in front of them when they had a tactile feedback of their surroundings.

Last, even with mirrors, some surroundings of the car can remain hidden from the driver's vision. A 238 239 good example is what is under the car, which can not be seen by the driver. (Ochiai and Toyoshima, 2012) proposed a system composed of IR distance sensors located under the car. This matrix is connected through 240 241 a Arduino micro controller to a $10 \text{ cm} \times 10 \text{ cm}$ matrix of tactors, providing a vibrotactile feedback under the left feet of the driver to notify him/her of what is under the car, for example, to perceive bumps when 242 parking backward. 243

In a nutshell, a tactile feedback at the seat and/or the driver's clothes is the main source of haptic information proposed for increasing the awareness of surroundings so far. This is similar to the kind of stimulation used for navigation purposes as there is a need to convey directional information. Only one study proposed a tactile feedback at the pedal in order to provide information regarding objects located under the vehicle.

4.2 Collision prevention

250 Collisions cause a high proportion of car-related accidents and can lead to severe injuries (Lao et al., 2014). Avoiding a collision with another car requires a quick reaction from the driver. However, this implies 251 that the driver noticed the imminent collision. This requires a constant focus from the driver on the road 252 and his/her surroundings in cases of lateral or rear-end collisions, which requires a lot of cognitive load. 253 Haptic feedback were shown to be very effective to reduce reaction times in cars. Using a combination of 254 tactors located on the hands and around the wrist, Ahtamad et al. (2015) observed a reduction of braking 255 256 reaction time from around 1.6 s (without tactile warning) to 1.4 s (with tactile warning). This suggests that the haptic modality is a suitable solution for warning drivers of imminent collision. 257

The advantage of conveying the information of location of the imminent collision using a haptic belt around the waist was firstly demonstrated by Ho et al. (2006). They proposed a tactile belt including two actuators: one at the front of the driver and one at his/her back. The actuator in the front is activated when the car in front is too close, and the one in the back is activated when the following car is too close. (Fitch et al., 2007) proposed a haptic seat composed of a 8 × 8 matrix of tactors integrated to the pan of the seat. This enables to stimulate a large area of the body, enabling to localize more precisely a collision threat. They evaluated the effectiveness of the device by asking users to localize the stimulation between 8 possible locations. They compared their system with auditory feedback provided by speakers. Compared to an audio warning, the spatial localization of the threat increased from 32 % to 84 %, and the localization time was reduced by 257 ms using haptic feedback. Gray et al. (2014) proposed the use of three vertically aligned tactors attached to the driver's waist. They highlight that a sequential activation of these tactors from bottom to top (i.e. toward the head) induced the lowest reaction time. Similar effects on the use of haptic feedback on reaction time were found by de Rosario et al. (2010) proposed a vibrotactile pedal to warn drivers about frontal collision. They found that drivers could react 0.3 s faster with their device in

- comparison to a visual warning. Besides, the best performance was obtained when using vibrations ranging
- from 5 Hz to 10 Hz. 273
- In a nutshell, the areas of stimulation in the car used for collision prevention are the same than for 274
- 275 increasing the awareness of surroundings, namely the seat, the driver's clothes and the pedal. All feedback
- concern tactile stimulation and not kinesthetic feedback due to safety reason. The proposed feedback can 276
- inform the driver, but not take control of the car. 277

Lane departure 4.3 278

- A common consequence of a driver's inattention on the road is lane departure (Mattes, 2003). Lane 279
- departure could threat the driver's life if the car ends in a ditch along the road, or collisions with other cars 280
- coming from the opposite way. To overcome this issue, some roads are equipped with bumps placed on 281
- their lane markings to provide a haptic feedback to the driver when they drive over them. However, these 282
- bumps do not exist everywhere. 283
- Tactile feedback located on the steering wheel could be effective to warn drivers of lane departures 284
- (Suzukia and Jansson, 2002). They showed that their vibrotactile feedback was intuitive as their participants 285
- thought their vehicule was deviating when feeling vibrations, even if they were not previously informed of 286
- the meaning of this feedback. Many studies thereafter focused on using haptic signals at the steering wheel 287
- for lane departure warnings. Onimaru and Kitazaki (2008) proposed for instance a steering wheel with 288
- 289 two vibrotactors, one on each side of the wheel. A vibration indicated when the car went away from the
- center of the road. This display was more efficient than a visual equivalent using two colored disks located 290
- at the left and right of the road to help the participants to correct the trajectory of the car. A limitation of 291
- these works is that they indicate when and in which direction, but not how much the steering must move to 292
- correct the trajectory. 293
- 294 Katzourakis et al. (2013) proposed a kinesthetic steering wheel to prevent lane departure. The steering
- 295 wheel applied a torque such that the driver and the car turn the steering wheel cooperatively. Tactile
- feedback were also investigated for lane departure prevention. A vibrotactile seat can also reduce the 296
- reaction time during a lane departure compared to an auditory warning, from 1.24 s to 0.89 s (Stanley, 297
- 2006). Besides, users found this kind of feedback less annoying and providing less interferences than 298
- auditory feedback. 299
- 300 Pedals with augmented haptic feedback have also been considered to convey information to the driver.
- For instance, Kurihara et al. (2013) proposed a tactile pedal that vibrates in case of lane departure. They 301
- observed a significant reduction of off-track incidents when using a pedal augmented with a tactile feedback. 302
- In a nutshell, tactile and kinesthetic feedback at the steering wheel are the main kinds of haptic stimulation 303
- which have been proposed to inform drivers of lane departure so far. The steering wheel has to be turned
- to correct the trajectory. Tactile feedback at the seat and the pedal have been also proposed to decrease 305
- reaction times during lane departure. 306

4.4 Speed control 307

- The driver is usually informed of the current speed of his/her car with the speedometer. This could lead 308
- to safety concerns as maintaining a correct speed requires constant speed control. 309
- In order to control speed using haptics, several previous works mainly applied a haptic feedback on the 310
- acceleration pedal as it is the device that is naturally used to control the car's speed. Adell et al. (2008) 311
- proposed an active accelerator pedal using force-feedback to warn drivers in case of speeding by applying a

- 313 resistance to pressure at the pedal. They observed that the device was more effective in reducing the driver's
- 314 speed than combined visual and auditory warnings (flashing red light and beep signal). For example, at a
- speed limit of 30 km.h^{-1} , drivers used to drive at 42 km.h^{-1} . Their speed decreased to 38 km.h^{-1} when
- 316 using visual and auditory feedback and to 35 km.h^{-1} when using a haptic feedback at the pedal.
- 317 The same kind of feedback can also be applied to help drivers to maintain a specific speed. Controlling
- 318 the reaction force of the accelerator pedal appeared to be more effective to help the driver to keep a desired
- 319 speed than a visual feedback located on the dashboard. Yin et al. (2012) highlighted that haptic feedback
- 320 provide smoothness in following the desired speed and a shorter reaction time than the visual feedback.
- 321 The efficiency of their device has also been demonstrated in real driving situations and after a long time
- 322 deployment. Vlassenroot et al. (2007) showed that in a real driving context where drivers were circulating
- 323 on a 90 km.s^{-1} road, a pedal augmented with force feedback helped reducing speeding by almost 10 %.
- 324 Moreover, these drivers reported that the system was satisfying and useful.
- Last, tactile feedback were also proposed to encourage eco-driving in cars with manual transmission.
- 326 (Birrell et al., 2013) notably proposed a device consisting in an acceleration pedal which vibrates when it is
- 327 time to shift gears. They observed positive effects of the haptic feedback on the accelerations of the driver.
- 328 In a nutshell, tactile and kinesthetic feedback at the pedal are the main kinds of haptic stimulation which
- 329 were proposed to prevent drivers from speeding so far. Two approaches have been explored: one only
- 330 informing the driver through tactile feedback, and one inciting the driver to slow down through force
- 331 feedback.

345

346

347

348

349 350

5 DISCUSSION

5.1 Which haptic technology for which use?

- Multiple haptic technologies were proposed to increase safety and provide assistance and warnings to the
- 334 drivers. Table 1 and Table 2 provide an overview of all the technologies presented in this paper depending
- on the targeted use. These Tables notably highlight that the different uses involve different locations of
- 336 stimulation:
- The **dashboard** (tactile) is related to the control of the different functions of the car. This is not surprising as the driver is only in contact with this area when he/she wants to access specific functions.
- The **steering wheel (tactile)** is related to navigation and collision prevention purposes. The wheel is used to change directions, and is required in both cases. As the feedback is tactile, it notifies the driver of the danger but does not turn the wheel for him/her.
- The **steering wheel (kinesthetic)** is related to maneuvering assistance. The objective is to help the drivers to manipulate the wheel in order to complete various tasks as parking, explaining the use of force-feedback on the steering wheel.
 - The **seat (tactile)** is related to navigation, awareness support and lane departure. Seats enable to stimulate a large area of the body. All of the corresponding uses are linked with communicating spatial information to the driver.
 - The **clothes** (**tactile**) are related to navigation, awareness support and collision prevention. Similarly to seats, what all of these cases have in common is that they refer to localization in space, in order to provide guidance information or warn the driver about objects in his/her surroundings.

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

371

374

381

382

383

384

385

386

387

388

389

390

- The **pedal** (tactile) is related to all presented haptic warning systems. While this feedback could also 351 be used for eco-driving purposes, tactile haptic augmentation of the pedal is more used for warning 352 than assistance purposes (Birrell et al., 2013). 353
 - The **pedal** (**kinesthetic**) is related only to speed control. To reduce speeding, the accelerator pedal needs to be released. This justifies a kinesthetic feedback in order to suggest to the driver to release the pedal.

Many cells of Table 1 are empty due to a lack of corresponding studies. This suggests novel systems and novel paths for haptic technologies. For instance, a tactile steering wheel might display vibrations when speeding, providing the same kind of feedback which naturally occurs when the wheels of the car are not correctly in contact with road. This would also work with a defective speed regulator as the driver remains in contact with the road, but not with the accelerator pedal.

While using multiple areas to stimulate on the driver's body have been investigated for some specific uses, all devices are not equal in drawing attention, for instance, for blind spot warnings. (Chun et al., 2013) made a comparison between a haptic steering wheel to a haptic seatbelt for blind spot warnings. They showed that a haptic steering wheel provided a better collision prevention rate, and a smaller distance of collision avoidance.

Two specific areas for haptic feedback in the car could be further explored: the seat belt and the gearshift. While mentioned in Figure 1, there is few studies as the ones of (Scott and Gray, 2008; Chun et al., 2013) which focus of augmenting the seatbelt with haptic feedback. An explanation would be that the seat itself covers a larger area of stimulations than seat belts, which cover only the torso of the driver, while belts 370 around waist provide 360° haptic stimulations. Another area is the gearshift, which was not mentioned on the figure as not all cars has one. In most countries, cars possess an automatic transmission and no gearshift. 372 Manual transmission car could take advantage of a haptic gearshift, for instance, to convince or avoid the 373 driver from shifting the gear.

Finally, the different studies presented mainly focused on static haptic feedback, which do not evolve 375 through time. One of the explanation is that the tactors employed are generally few. Using more complex 376 technology, it becomes possible to convey more precise and intuitive information using dynamic feedback 377 evolving through time (Hwang and Ryu, 2010; Ho et al., 2014). Such feedback could convey more 378 efficiently information as direction or distance by activating tactors in sequence. For instance, (Meng et al., 379 2015) displayed that dynamic tactile signals can shorten reaction times. 380

Limits of existing experimental protocols

A lot of variables which might influence results during experiments should be taken in account in future works. For instance, recent studies as the one of Duthoit et al. (2016) showed that light clothes do not change the perception of vibrations issued from the seat. But if one aims to design a haptic seat, the height and weight of the driver could influence the perception of the tactile feedback (Grah et al., 2016). Drivers age also matters as people aged of more than 60 years old seem to be more affected by the presence of haptic stimuli in cars than younger people (Ahtamad et al., 2015). Other parameters such as the habits of the driver should be investigated or at least controlled, such as the way they use to put their hands on the steering wheel (Walton and Thomas, 2005). These parameters could drastically influence the way drivers perceive haptic feedback.

Most of the studies present here are relatively recent and concern preliminary results or feasibility studies. 391 Then, their first results remain to confirm through deeper investigations. Petermeijer et al. (2015) conducted 392

400

401

402 403

404

405

406

407

408

409

410

428 429

430 431

432

a complete and extensive survey on the design of experimental protocols to collect representative measures of the improvement of the performance provided by the haptic modality during driving. Considering the measures used to evaluate a haptic system for the driver's safety is crucial, e.g., a subjective preference for a system does not imply this system is safer. Their survey explored various experimental studies and their measures to evaluate the efficiency of the proposed systems and is a great complement to our own survey, which adopts a more technical point-of-view.

While it is important to control the experiment for valid results, the results from specific uses would not necessarily be applicable to real driving contexts. Most of the researches presented in the current survey use driving simulators as OpenDS ¹ for their experiments. However, driving in a real environment includes a high number of variables (Morrell and Wasilewski, 2010). For instance, the tactile perception could be influenced during a real and stressful driving environment compared to an experiment in front of a screen. Besides, the influence of ambient vibrations on the driver's tactile perception in a real driving context should be deeper investigated (Ryu et al., 2010). This explains why systems aiming to enhance safety for drivers should be evaluated in practical use. More experiments in a real environment should be further investigated. As Katzourakis et al. (2014a) stated: "Real car tests are irreplaceable for developing systems related to dynamic driving". Besides, long term experiments such as the one proposed by Dass (2013) should be carried out to evaluate if the haptic feedback do not lead to too much driver's confidence in the car, which could introduce a new kind of risk.

One question remaining is the integration of multiple haptic feedback for different uses in the same car. Confusing a feedback related to collision prevention for a feedback related to navigation purpose could lead to bad consequences. While most works focus on designing a specific feedback for one use, it remains unknown how different haptic feedback could interact all together in a car enhancing (or not) the driver's safety.

416 5.3 Towards a multimodal car

417 A haptic feedback alone could be inefficient in some cases. For instance, tactile feedback on the dashboard tend to decrease eyes-off-road, but the real improvements given by this feedback depends on the task. 418 Visual-haptic and auditory-haptic combinations should be further investigated in scenarios with varying 419 primary and secondary task workloads as suggested by (Pitts et al., 2012). For example, when the driver is 420 holding a basic conversation on the phone, tactors located on the waist of the driver appeared to be more 421 422 effective than an audio warning, especially if the driver has a basic conversation (Mohebbi et al., 2015). At 423 the opposite, a multimodal visual-auditory combination seems more effective in a normal driving condition, while a visual-haptic combination seems more effective during a task requiring an heavy cognitive load 424 425 (Hancock et al., 2013; Mullenbach et al., 2013). Thorslund et al. (2013) showed that the improvement of 426 the performance obtained by tactile feedback is more visible with people with hearing loss, not able to hear instructions from GPS navigation systems. 427

Haptic feedback appears to be also less effective for certain tasks such as navigation than other modalities, leading to navigation errors (Nukarinen et al., 2014). A solution could be the combination of visual and tactile stimuli. In this configuration, a tactile stimulus notify the driver that a navigation instruction is ready, while the trajectory is still conveyed using the visual modality. This could reduce the time spent looking at the GPS device. These results suggests that the best output modality to communicate with the driver would

¹ https://www.opends.eu/home

436

437

438

439

440

441

442

443 444

445

446

447

448

449

450

451

452

453

454 455

456

457 458

459

460

461

462

463

464

465

466

467

468

469

470 471

probably depends on the situation. More detailed guidelines on the use of haptics with other modalities for warnings can notably be found in Haas and Van Erp (2014).

5.4 Applications to other means of travel

All the presented studies concern haptic stimulations in cars, which are the most common type of vehicule. However, the haptic modality could also help enhancing the safety of users of other means of travel. For example, a haptic seat in trucks could all the more enhance spatial awareness as it is difficult to look behind when driving this kind of vehicule, which does not have a rear-view mirror. During an interview, truck drivers reported that the criticality of lane departure is not correctly reflected by auditory warnings (Dass, 2013). After a road test in a real driving task using a vibrotactile seat, these truck drivers reported that the tactile feedback offered them an efficient warning for lane departure. There are also many haptic systems concerning flying vehicules. Arrabito et al. (2011) showed that the haptic modality increases the vigilance of pilots during a flying task, because tactile feedback provide a higher detection rate and shorter responses times to unexpected events than visual feedback. Sklar and Sarter (1999) also noticed that during flying training sessions, users perceive tactile warnings better than visual warnings.

Some of the technologies presented in this study could be directly applied to other vehicles with little adaptation. For instance, clothes providing tactile feedback could be interesting for all vehicules and pedestrians as they are not linked to the car itself. However, other presented technologies might not apply to other vehicles due to large differences in equipment between vehicles. For instance, two-wheeled vehicules as motorcycles often do not have a back on the seat.

6 CONCLUSION

We have presented a survey on the use of haptic feedback in cars to enhance drivers safety. Haptic feedback appears to be an effective way to reduce the visual workload and convey information, such as for preventing from hazards. This encouraged the development of numerous haptic solutions to enhance safety while driving. These solutions consist in augmenting with haptic feedback (either tactile or kinesthetic) various areas of the car: the dashboard, the steering wheel, the seat, the seat belt, the driver's clothes and the accelerator pedal. Each area was shown to be usually linked to specific uses of haptic systems. We identified two main categories of haptic systems for this survey. First, haptic assistance systems aiming to help the driver during task he or she initiated himself or herself. These tasks include controlling the car's functions, maneuvering his/her vehicule and navigation. The areas of stimulation used are mainly the dashboard and steering wheel, and the seat for navigation purposes. Second, haptic warning systems aiming to warn the driver of unexpected events threatening his or her safety. The objectives of these systems are to increase awareness of surroundings, collision prevention, lane departure prevention and speed control. The areas of stimulation used are mainly the seat, clothes and pedal. However, a lot of paths remain today little explored. For example, some possible areas of stimulation remain little investigated, as for the gearshift. The experimental protocols used to evaluate the improvement given by the haptic systems are also limited as most of them are not investigating real driving contexts. Thus, they do not take in account some variables as the stress that might happen in a real environment, or an overconfidence of the driver in the haptic assistance and warning systems. Besides, the technologies presented here could also be tested in combination with other modalities or in other means of travel than cars. We hope that the information contained in this survey will be helpful for future research towards the haptic car of tomorrow.

FUNDING

472 This work was supported by the European Commission through the HAPPINESS project (SEP-210153552).

REFERENCES

- 473 Adell, E., Várhelyi, A., and Hjälmdahl, M. (2008). Auditory and haptic systems for in-car speed
- 474 management A comparative real life study. *Transportation Research Part F: Traffic Psychology and*
- 475 Behaviour 11, 445–458
- 476 Ahtamad, M., Gray, R., Ho, C., Reed, N., and Spence, C. (2015). Informative collision warnings: Effect of
- 477 modality and driver age. Proceedings of the Eight International Driving Symposium on Human Factors
- in Driver Assessment, Training and Vehicle Design, 330–336
- 479 Arrabito, G. R., Ho, G., Aghaei, B., Burns, C., and Hou, M. (2011). Effects of Vibrotactile Stimulation
- 480 for Sustaining Performance in a Vigilance Task: A Pilot Study. *Proceedings of the Human Factors and*
- 481 Ergonomics Society Annual Meeting 55, 1160–1164
- 482 Asif, A., Boll, S., and Heuten, W. (2012). Right or Left: Tactile Display for Route Guidance of Drivers.
- 483 Information Technology 54, 188–198
- 484 Benedetto, A., Calvi, A., and D'Amico, F. (2012). Effects of mobile telephone tasks on driving performance:
- A driving simulator study. Advances in Transportation Studies, 29–44
- 486 Birrell, S. A., Young, M. S., and Weldon, A. M. (2013). Vibrotactile pedals: provision of haptic feedback
- to support economical driving. *Ergonomics* 56, 282–292
- 488 Chang, W., Hwang, W., and Ji, Y. G. (2011). Haptic Seat Interfaces for Driver Information and Warning
- 489 Systems. International Journal of Human-Computer Interaction 27, 1119–1132
- 490 Chun, J., Lee, I., Park, G., Seo, J., Choi, S., and Han, S. H. (2013). Efficacy of haptic blind spot warnings
- 491 applied through a steering wheel or a seatbelt. *Transportation Research Part F: Traffic Psychology and*
- 492 *Behaviour* 21, 231–241
- 493 Dass, D. (2013). Haptic in-seat feedback for lane departure warning. Proceedings of the 5th International
- 494 Conference on Automotive User Interfaces and Interactive Vehicular Applications , 258–261
- 495 de Rosario, H., Louredo, M., Díaz, I., Soler, A., Gil, J. J., Solaz, J. S., et al. (2010). Efficacy and feeling of
- a vibrotactile Frontal Collision Warning implemented in a haptic pedal. *Transportation Research Part F:*
- 497 Traffic Psychology and Behaviour 13, 80–91
- 498 Diwischek, L. and Lisseman, J. (2015). Tactile Feedback for Virtual Automotive Steering Wheel Switches
- 499 , 31–38
- 500 Duthoit, V., Sieffermann, J.-M., Enrègle, E., and Blumenthal, D. (2016). Perceived Intensity of Vibrotactile
- 501 Stimuli: Do Your Clothes Really Matter? In Eurohaptics (London, UK), 412–418
- 502 Ege, E. S., Cetin, F., and Basdogan, C. (2011). Vibrotactile feedback in steering wheel reduces navigation
- errors during GPS-guided car driving. 2011 IEEE World Haptics Conference, 345–348
- 504 Fitch, G. M., Tech, V., Raymond, J., Hankey, J. M., Tech, V., Kleiner, B. M., et al. (2007). Toward
- Developing an Approach for Alerting Drivers to the Direction of a Crash Threat 49, 710–720
- 506 Grah, T., Epp, F., Meschtscherjakov, A., and Tscheligi, M. (2016). Dorsal Haptic Sensory Augmentation:
- Fostering Drivers awareness of their surroundings with a haptic car seat. In *International Conference on*
- 508 Persuasive Technology (Salzburg, Austria), 59–62
- 509 Grane, C. and Bengtsson, P. (2013). Driving performance during visual and haptic menu selection
- with in-vehicle rotary device. Transportation Research Part F: Traffic Psychology and Behaviour 18,
- 511 123–135

- 512 Gray, R., Ho, C., and Spence, C. (2014). A comparison of different informative vibrotactile forward
- collision warnings: does the warning need to be linked to the collision event? *PloS one* 9, e87070
- 514 Haas, E. C. and Van Erp, J. B. F. (2014). Multimodal warnings to enhance risk communication and safety.
- 515 *Safety Science* 61, 29–35
- 516 Hancock, P., Mercado, J., Merlo, J., and Van Erp, J. (2013). Improving target detection in visual search
- through augmenting multi-sensory cues. *Ergonomics*
- 518 Hirokawa, M., Uesugi, N., Furugori, S., Kitagawa, T., and Suzuki, K. (2014). Effect of Haptic Assistance
- on Learning Vehicle Reverse Parking Skills. *IEEE transactions on haptics* 7, 334–344
- 520 Hjelm, J. (2008). Haptics in cars
- 521 Ho, C., Gray, R., and Spence, C. (2014). Reorienting driver attentionwith dynamic tactile cues. *IEEE*
- 522 Transactions on Haptics 7, 86–94
- 523 Ho, C., Reed, N., and Spence, C. (2006). Assessing the effectiveness of "intuitive" vibrotactile warning
- signals in preventing front-to-rear-end collisions in a driving simulator. *Accident Analysis and Prevention*
- 525 38, 988–996
- 526 Ho, C., Tan, H. Z., and Spence, C. (2005). Using spatial vibrotactile cues to direct visual attention in
- driving scenes. Transportation Research Part F: Traffic Psychology and Behaviour 8, 397–412
- 528 Hogema, J., De Vries, S., Van Erp, J., and Kiefer, R. (2009). A Tactile Seat for Direction Coding in Car
- 529 Driving: Field Evaluation. *IEEE Transactions on Haptics* 2, 181–188
- 530 Hwang, J., Chung, K., Hyun, J., Ryu, J., and Chi, K. (2012). Development and Evaluation of an In-Vehicle
- Haptic Navigation System. Information Technology Convergence, Secure and Trust Computing, and
- 532 *Data Management* 180, 47–53
- 533 Hwang, S. and Ryu, J. H. (2010). The haptic steering wheel: Vibro-tactile based navigation for the
- driving environment. In *IEEE International Conference on Pervasive Computing and Communications*
- 535 *Workshops*. 660–665
- 536 Katzourakis, D. I., de Winter, J. C. F., Alirezaei, M., Corno, M., and Happee, R. (2013). Road-Departure
- Prevention in an Emergency Obstacle Avoidance Situation. *IEEE Transactions on Systems, Man, and*
- 538 *Cybernetics: Systems* 44, 1–1
- 539 Katzourakis, D. I., Velenis, E., Holweg, E., and HAPPEE, R. (2014a). Haptic steering support for driving
- near the vehicle's handling limits; skid-pad case. *International Journal of Automotive Technology* 15,
- 541 151–163
- 542 Katzourakis, D. I., Velenis, E., Holweg, E., and Happee, R. (2014b). Haptic Steering Support for Driving
- Near the Vehicle's Handling Limits: Test-Track Case. *Ieee Transactions on Intelligent Transportation*
- 544 Systems 15, 1781–1789
- 545 Koo, J., Kwac, J., Ju, W., Steinert, M., Leifer, L., and Nass, C. (2014). Why did my car just do that?
- Explaining semi-autonomous driving actions to improve driver understanding, trust, and performance.
- 547 International Journal on Interactive Design and Manufacturing 9, 269–275
- 548 Kurihara, Y., Hachisu, T., Sato, M., Fukushima, S., and Kajimoto, H. (2013). Periodic tactile feedback for
- accelerator pedal control. 2013 World Haptics Conference (WHC), 187–192
- 550 Lao, Y., Zhang, G., Wang, Y., and Milton, J. (2014). Generalized nonlinear models for rear-end crash risk
- analysis. Accident Analysis & Prevention 62, 9–16
- 552 Löcken, A., Buhl, H., Heuten, W., and Boll, S. (2015). TactiCar: Towards Supporting Drivers During Lane
- 553 Change Using Vibro-Tactile Patterns, 32–37
- Mattes, S. (2003). The Lane Change Task as a Tool For Driver Distraction Evaluation. Quality of work and
- 555 products in enterprises of the future, 1–30

- Meng, F., Gray, R., Ho, C., Ahtamad, M., and Spence, C. (2015). Dynamic Vibrotactile Signals for Forward Collision Avoidance Warning Systems. *Human Factors* 57, 329–346
- 558 Mohebbi, R., Gray, R., and Tan, H. (2015). Driver Reaction Time to Tactile and Auditory Rear-End
- Collision Warnings While Talking on a Cell Phone. *Human Factors: The Journal of the Human Factors*
- *and Ergonomics Society* 51, 102–110
- 561 Morales, J., Mandow, A., Martínez, J. L., Reina, A. J., and García-Cerezo, A. (2013). Driver assistance
- system for passive multi-trailer vehicles with haptic steering limitations on the leading unit. Sensors
- 563 (Basel, Switzerland) 13, 4485–98
- 564 Morrell, J. and Wasilewski, K. (2010). Design and evaluation of a vibrotactile seat to improve spatial
- awareness while driving. *Haptics Symposium*, 2010 IEEE, 281–288
- Mullenbach, J., Blommer, M., Colgate, J. E., and Peshkin, M. A. (2013). Reducing Driver Distraction with
- 567 Touchpad Physics
- 568 Murata, A. and Kuroda, T. (2015). Effects of Auditory and Tactile Warning on Drivers' Response to Hazard
- Under Noisy Environment. In Engineering Psychology and Cognitive Ergonomics. 45–53
- 570 Nukarinen, T., Raisamo, R., Farooq, A., Evreinov, G., and Surakka, V. (2014). Effects of directional haptic
- and non-speech audio cues in a cognitively demanding navigation task. *Proceedings of the 8th Nordic*
- 572 Conference on Human-Computer Interaction Fun, Fast, Foundational NordiCHI '14, 61–64
- 573 Ochiai, Y. and Toyoshima, K. (2012). Invisible feet under the vehicle. In Augmented Human International
- 574 *Conference* (Megève, France), 1–2
- 575 Onimaru, S. and Kitazaki, M. (2008). Visual and Tactile Information to Improve Drivers 'Performance. In
- 576 IEEE Virtual Reality (Massachusetts, USA), 295–296
- Petermeijer, S. M., Abbink, D. A., Mulder, M., and De Winter, J. C. F. (2015). The Effect of Haptic Support
- 578 Systems on Driver Performance: A Literature Survey. *IEEE Transactions on Haptics* 8, 467–479
- 579 Pettitt, M., Burnett, G., and Stevens, A. (2005). Defining Driver Distraction. In World Congress on
- 580 Intelligent Transport Systems (San Francisco, CA, USA), 12
- 581 Pitts, M. J., Burnett, G., Skrypchuk, L., Wellings, T., Attridge, A., and Williams, M. a. (2012). Visual-haptic
- feedback interaction in automotive touchscreens. *Displays* 33, 7–16. doi:10.1016/j.displa.2011.09.002
- 583 Politis, I., Brewster, S., and Pollick, F. (2014a). Speech Tactons Improve Speech Warnings for Drivers.
- 584 Proceedings of the 6th International Conference on Automotive User Interfaces and Interactive Vehicular
- 585 Applications Automotive UI '14, 1–8
- 586 Politis, I., Brewster, S. a., and Pollick, F. (2014b). Evaluating multimodal driver displays under varying
- 587 situational urgency. *Chi* 2014, 4067 4076
- 588 Profumo, L., Pollini, L., and Abbink, D. A. (2013). Direct and Indirect Haptic Aiding for Curve Negociation.
- In IEEE Int. Conf. Systems Man and Cybernetics. 1846–1852
- 590 Ryu, J., Chun, J., Park, G., Choi, S., and Han, S. H. (2010). Vibrotactile Feedback for Information Delivery
- in the Vehicle. *Haptics, IEEE Transactions on* 3, 138–149
- 592 Scott, J. J. and Gray, R. (2008). A comparison of tactile, visual, and auditory warnings for rear-end
- collision prevention in simulated driving. *Human factors* 50, 264–275
- 594 Sklar, A. E. and Sarter, N. B. (1999). Good vibrations: Tactile feedback in support of attention allocation
- and human-automation coordination in event-driven domains. *Human Factors* 41, 543–552
- 596 Stanley, L. M. (2006). Haptic and auditory cues for lane departure warnings. *Proceedings of the Human*
- 597 Factors and Ergonomics Society Annual Meeting 50, 2405–2408
- 598 Strayer, D. L. and Drews, F. a. (2007). Cell-phone? Induced driver distraction. Current Directions in
- 599 Psychological Science 16, 128–131

- Suzukia, K. and Jansson, H. (2002). An analysis of driver's steering behavior during auditory or haptic warnings for the designing of lane departure warning system. *JSAE Review* 24, 65–70
- Tan, H. Z., Gray, R., Young, J. J., and Traylor, R. (2003). A Haptic Back Display for Attentional and Directional Cueing. *Haptics-e* 3, 1–20
- Thorslund, B., Peters, B., Herbert, N., Holmqvist, K., Lidestam, B., Black, A. a., et al. (2013). Hearing loss
- and a supportive tactile signal in a navigation system : Effects on driving behavior and eye movements.
- 606 Journal of Eye Movement Research 6, 1–9
- Van Erp, J. and Van Veen, H. (2001). Vibro-tactile information presentation in automobiles. In *Proceedings* of Eurohaptics (Birmingham, UK), 99–104
- Vlassenroot, S., Broekx, S., Mol, J. D., Panis, L. I., Brijs, T., and Wets, G. (2007). Driving with intelligent
- speed adaptation: Final results of the Belgian ISA-trial. Transportation Research Part A: Policy and
- 611 *Practice* 41, 267–279
- 612 Walton, D. and Thomas, J. (2005). Naturalistic observations of driver hand positions. Transportation
- 613 Research Part F: Traffic Psychology and Behaviour 8, 229–238
- 614 Yin, F., Hayashi, R., Pongsathorn, R., and Masao, N. (2012). Haptic Velocity Guidance System by
- Accelerator Pedal Force Control for Enhancing Eco-Driving Performance. In *Proceedings of the FISITA*
- 616 2012 World Automotive Congress. 37–49

ABOUT THE AUTHORS

Yoren Gaffary is a Post-doctoral fellow at Inria on tactile perception and interaction design. His research interests are in affective computing, haptic and augmented reality. He received a master's degree in Information, Learning and Cognition at Paris South University. His Ph.D. thesis at University of Paris-Sud, France, concerned affective computing using mediated touch with robotic devices coupled with virtual humans.

Anatole Lécuyer is Senior Researcher and head of Hybrid research team, at Inria Rennes, France. He is currently Associate Editor of "Frontiers in Virtual Environments" and "Presence" journals, and formerly of "ACM Transactions on Applied Perception" and "IJHCS". He was Program Chair of IEEE Virtual Reality Conference (2015-2016) and IEEE Symposium on 3D User Interfaces (2012-2013).

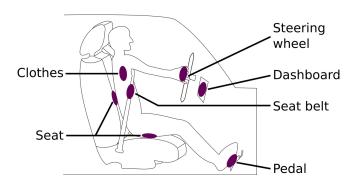
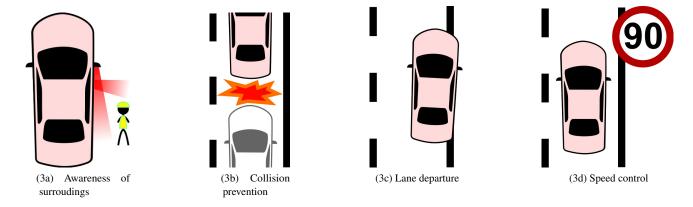



Figure 1. The haptic car: areas for haptic stimulation in a car.

Figure 2. Haptic assistance systems: controlling the different functions of the car, support to maneuver the car and guiding the driver.

Figure 3. Haptic warning systems. They are the cause of common accidents: lack of awareness of what is around the car, collisions with other vehicules, lane departure and speeding. The haptic modality helps to reduce response time while providing spatial information.

Table 1. Haptic assistance systems proposed for car safety.

Car area Mod.		Functions control	Maneuver support	Navigation	
Dashboard	Т	(Grane and Bengtsson, 2013; Mullenbach et al., 2013; Pitts et al., 2012)	N.A	N.A	
Steering wheel	T	(Diwischek and Lisseman, 2015)	N.A	(Hwang and Ryu, 2010; Ege et al., 2011)	
Steering wheel	K	N.A	(Katzourakis et al., 2014b; Morales et al., 2013; Profumo et al., 2013; Hirokawa et al., 2014)	N.A	
Seat	T	N.A	N.A	(Hogema et al., 2009; Hwang et al., 2012; Thorslund et al., 2013)	
Clothes	T	N.A	N.A	(Asif et al., 2012)	
Pedal	T	N.A	N.A	N.A	
Pedal	K	N.A	N.A	N.A	

Table 2. Haptic warnings systems proposed for car safety.

Car area	Mod.	Awareness support	Collision prevention	Lane departure	Speed control
Dashboard	Т	N.A	N.A	N.A	N.A
Steering wheel	Т	N.A	N.A	(Suzukia and Jansson, 2002; Onimaru and Kitazaki, 2008)	N.A
Steering wheel	K	N.A	N.A	(Katzourakis et al., 2013)	N.A
Seat	Т	(Grah et al., 2016; Morrell and Wasilewski, 2010)	(Fitch et al., 2007)	(Stanley, 2006)	N.A
Clothes	Т	(Löcken et al., 2015; Ho et al., 2005)	(Ho et al., 2006; Gray et al., 2014; Ahtamad et al., 2015)	N.A	N.A
Pedal	T	(Ochiai and Toyoshima, 2012)	(de Rosario et al., 2010)	(Kurihara et al., 2013)	(Birrell et al., 2013)
Pedal	K	N.A	N.A	N.A	(Adell et al., 2008; Yin et al., 2012; Vlassenroot et al., 2007)